
1. Ap& Maths Mcchs, Vol. 61, No. 6, pp. 921~930,1997 
0 1998 Ekevier Science Ud 

PII: s0021-89ur(97)00l20-2 
All rights reserved. Printed in Great Brkaia 

0021-8928/97 $24.00+0.00 

WEAK OSCILLATIONS OF A GAS BUBBLE IN 
A SPHERICAL VOLUME OF COMPRESSIBLE LIQUID? 

I. Sh. AKHATOV, N. K. VAKHITOVA, G. Ya. GALEYEVA; 
R. I. NIGMATULIN and D. B. KHISMATULLIN 

Ufa 

(Received 29 November 1996) 

lhe following spherically symmetric problem is considered: a single gas bubble at the centre of a spherical flask tilled with a 
compressible liquid is oscillating in response to forced radial excitation of the flask walls. In the long-wave approximation at low 
Mach numbers, one obtains a system of differentiaI-difference equations generalizing the RayleigbLamb-Plesseth equation. 
Thii system takes into account the compressibiity of the liquid and is suitable for describing both free and forced oscillations 
of the bubble. It indudes an ordinary differential equation analogous to the Herring-Piinn-Gilmore equation describing the 
evolution of the bubble radius, and a &lay equation relating the pressure at the flask wails to the variation of the bubble radius. 
The solutions of this system of differential-difference equations are analyzed in the linear approximation and numerical analysis 
is used to study various modes of weak but non-linear oscillations of the bubble, for different laws governing the variation of 
the pressure or velocity of the liquid at the flask wall. These solutions are compared with numericai solutions of the complete 
system of partial differential equations for the radial motion of the compressiile liquid around the bubble. 0 1998 Hlsevier science 
Ltd AU rights reserved. 

1. FORMULATION OF THE PROBLEM 

Mathematical studies of the radial pulsations of a gas bubble in a homogeneous liquid previously took 
one of two forms. One approach was to assume that the liquid is unbounded and incompressible, but 
with the pressure at infinity specified. The equation of motion of the liquid was then reduced to the 
Rayleigh-Lamb-Plesseth equation [l-3] 

a U ;&2_PU-P.. dw da 

dt 2* p ’ 
wu =-, 

dt (1-l) 

where p is the density, Z is the surface tension of the liquid, W, is the radial velocity of the liquid at the 
bubble surface,P is the gas pressure in the bubble (more precisely, at its walls),P, is the liquid pressure 
at the bubble w aii, and p.. is the pressure far away from the bubble (at infinity). The other method was 
to allow for the weak compressibility of the unbounded liquid surrounding the bubble by adopting the 
so-called scheme of linear or non-linear acoustic radiation. In that case the radial motion of the bubble 
was described by the: Herring-Flinn-Gilmore equation [4] 

QU+2W2 =~+- dw a d(pa-pm) 
dt 2 ’ p pC dt (1.2) 

Allowance was made for the damping of the oscillations owing to spherical acoustic pressure waves 
radiating from the bubble. The pressurep, was interpreted as the pressure in the liquid far from the 
bubble, but no method for calculating it was specified. 

An approximate theory, based on the perturbation method, was developed for the radial motions of 
a spherical bubble in an unbounded compressible liquid on the assumption that the liquid is not 
perturbed at in&&y [5]. This theory yielded a “family” of equations for the bubble oscillations, which 
includes Rq. (1.2) and the equations obtained by others [4] as special cases. It has been shown that all 
these equations are “equivalent”, in the sense that they are accurate to the same order with respect to 
the Mach number. It was assumed that the bubble oscillations have no influence on the external acoustic 
pressure field in the liquid, i.e. a wave incident on the bubble is reflected from it unchanged. This enabled 
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the problem of the oscillating bubble to be treated in isolation from the acoustic problem in the liquid, 
using the external acoustic field as a given driving force acting on the bubble. 

In this paper we consider the combined problem of the oscillations of the bounded volume of liquid 
and the gas bubble. It will be shown that the problem may be reduced to an equation similar to the 
Herring-Flinn-Gihnore equation for the bubble radius, in which the dependence of the driving pressure 
on the change in the bubble radius and the pressure at the outer boundary of the liquid (the flask wall) 
is given by a differential-difference equation. 

Consider a liquid in a spherical flask of radius R and a spherical bubble of radius a at the centre of 
the flask. We will study the spherically symmetric radial motions of the liquid around the bubble, due 
to small spherically symmetric displacements of the flask wall, of amplitude &, assuming that 

a%R, 6&R (1.3) 

One might think that when a Q R the pressure far from the bubble may be taken equal to the pressure 
pR at the flask wall, i.e. p_ = pR. However, this is not generally true. 

First, because of the finite speed at which the perturbations propagate in the liquid (the finite speed 
of sound in the liquid), there is a time delay fd between the perturbation at the flask wall and the arrival 
of this perturbation in the vicinity and, in particular, at the wall of the bubble. For RF = 5 cm and C = 
1500 m/s one has td = 33 lo which is comparable with (or even greater than) the oscillation period if 
the frequency of the imposed perturbation isf > 10 kHz. 

Second, a perturbation originating at the outer boundary of the liquid (the flask wall), owing to its 
spherical acoustic convergence as it penetrates the flask, is amplified as r-‘, where r is the radial 
coordinate measured from the centre of the spherical flask. Hence the bubble will “sense” the 
amplification of the perturbation compared with its amplitude at the boundary of the flask r = R. 

Thus, the Rayleigh-Lamb-Plesseth equation (1.1) and the Herring-Flinn-Gihnore equation (1.2), 
both of which assume that the liquid is infinite, are not suitable for a gas bubble in a finite volume of 
compressible liquid. 

The spherically symmetric formulation of the problem of radial motions (the field of radial velocities 
w(r, t)) of a compressible liquid around a spherical bubble, which includes differential equations for 
the mass and the momentum, the barotropic state equation of the liquid at pressure p and density p, 
and the boundary conditions at the bubble surface r = CI and the flask wall r = R, may be written as 
follows: 

*+=+*=o, p&+pwaw+?E=o p=p(p) at ar r at ar ili- ’ 

r=R: p=pR(t); r=a: p=p,(a)=p,(a)-%, 
da 

w=wa=x=a’ 

(1.4) 

(l-5) 

2. THE EQUATIONS OF THE RADIAL OSCILLATIONS 
OF THE BUBBLE 

It can be shown that the space between the bubble surface and the outer surface of the flask consists 
of three zones: 

1. A far or external zone, where the compressibility of the liquid is significant but the non-linear inertial 
forces produced by convective accelerations are negligibly small and the motion of the liquid is wave- 
like. 

2. The neighbourhood of the bubble, or internal zone, where the liquid may be considered to be 
incompressible and the motion is due only to contraction and expansion of the bubble, but the non- 
linear inertial forces produced by convective accelerations are significant. 

3. An intermediate zone, where the compressibility of the liquid and the non-linear inertial forces 
produced by convective accelerations are fairly large. 

In the Iirst two zones one can construct appropriate asymptotic analytical solutions. 
In the external or far zone, far away from the bubble (? % a2), the convective accelerations of the 

liquid particles are fairly small 

waw I &4aw I af 
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This estimate follows from estimates for the accelerations 

waw/ar=w:fhR, awiatzww,it, G, = Ct,) 

where AR and tR are the length and period of the wave perturbation in the liquid in the external zone 
and tR is equal to the characteristic period of the vibrations at the flask wall. The ratio of these 
accelerations is equal to the characteristic Mach number MR of the motion of the flask wall, which is 
assumed to be small 

Then the momentum and mass equations of the continuous medium in the external domain (r + a, 
w < w,,p <pa) red!uce to the linear wave equation for the external asymptotic behaviour of the velocity 
potential (pex, which may be written as follows for spherically symmetric motion 

ex=C2 1 a 2a~ex 3% 
at2 

--_r- 

r2 ar (_ I ih 

The general solution of this equation is 

‘p,, J[v,(t-~)+%(t+~~l 

where ~2 characterizes a wave incident on the bubble and v2 characterizes a wave reflected from the 
bubble. 

Using the Cauchy-Lagrange integral for transient potential motion and the smallness of the 
perturbations in the external zone (2 % a2), one finds that the external asymptotic behaviour of 
the pressurep, the velocity w,, and the density pex may be described in terms of the asymptotic potential 
(pex as follows: 

P 
a(pex = a%x ax-P0 P ex=PO-PO at * wCX ar * PeX=PO+ C2 (2-l) 

In the second zone, or the region next to the bubble (r - (1 + lO)u), that is, in the boundary layer, 
which is thin compared with the radius of the flask, an estimate derived from the equation of conservation 
of mass (the first equation in (1.4)) yields the following formulae 

(2.2) 

where ta is the characteristic time of a density wave around the bubble and w, = a’ is the characteristic 
velocity of motion of the liquid at the bubble surface. The assumption that near the bubble the 
displacements of the liquid (due to the compressibility of the bubble) in the characteristic time ta are 
comparable with the bubble radius a may be written as follows: 

ta =a/w, 

At low Mach numbers near the bubble (Ma = w,/C 4 l), this assumption corresponds to long density 
waves near the bubble: h, - Ct, 9 a. 

In sum: the ratio of the terms associated with the compressibility (6~) to terms not associated with 
the compressibility is equal to the relative variation of the liquid density around the bubble, which is 
assumed to be very small 

Therefore, in a region close to the bubble but in the internal zone (cp = (Pin), the following asymptotic 
formula holds for an incompressible liquid 
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The solution of this equation, taking into account the boundary condition at the bubble wall (r = a: 
w = w, = n’), is 

‘Pin = -a’a2 / r (2.3) 

The Cauchy-Lagrange integral in this case includes a component corresponding to the non-linear 
inertial force; the integral is 

!!F+wz+L F(f) 
at 2 PO 

12.4 

In view of (2.3), this integral yields the Rayleigh-LambPlesseth equation (l.l), where p.. is the 
pressure at “internal infinity” 

r= Ri: p = p_ (a<R$R) (2.5) 

To obtain an equation for the radial motion of the gas bubble for a given perturbation at the flask 
wall (PR = pR(t)), taking into account the compressibility of the liquid, one must “match” the asymptotic 
solutions for the external and internal zones in the intermediate zone or at intermediate infinity. The 
matching condition must be used for the volume flow rate of the liquid and for the pressure 

a 4& ‘Pin 
ar I a =4xr2* , 

r-b- ar I PinI,+, = PeXlr+O 
r-b0 

(2.6) 

Taking into account the fact that the flow rate for an incompressible liquid depends only on time 

Q(t) = r2 % ia2da 
r-b- dt 

one can express the first relationship in (2.6) in the form 

Q(t)= r2 %ir+_ =-[W(t -$)+Vp(t+~)]+ 
+s[-~;(t-s)+~;(t+~)]r~O +-v,(t)-W2(t) 

implying the following relationship between the reflected and incident waves 

Yf1= -v2-Q 

and the asymptotic formula for the velocity potential in the far zone is 

qex =+2(t++2(t-$)-Q(t-$1 

(2.7) 

(24 

Using the Cauchy-Lagrange integrals (the first expression of (2.1) and (2.4)) and the asymptotic 
formulae for the velocity potentials (2.1) and (2.3), one finds asymptotic formulae for the pressure 
distributions in the external and internal zones 

PUr =P,-P+=P, +;(t+$)-y;(t-+)-Qft-$)I 

Pin = p&d- &f# + qa72 + q424# 
2 ) 

P a4w2 --- 
r 2 r4 

(2.9) 

(2.10) 
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The internal asymptotic behaviour (r + 0) of the external solution pa in (2.9) may be expressed as 
follows: 

Pcxl,,o = PO - !yo 

2p~;(t) pQ’(t) PQ’W 
‘PO- c -_+-+c (Qk(u%‘)‘> 

r 
(2.11) 

Estimating the limits of the last two asymptotic expressions using the second formula of (2.6), one 
obtains the long-wave approximation of the equation of radial oscillations in a compressible liquid 

3 ,~I+_/ = 
2 

p“(“;-po ++[2v;(t)+Q-(r)] (2.12) 

It is remarkable th,at the term pQ’(t)/r = p(a2u’)‘/r is the same both in the expression forp, and in 
the expression forpi, (compare (2.10) and (2.11)), so that the asymptotic formulae can be compared. 

The pressure at the flask wall may be expressed as follows, taking into account the external asymptotic 
formula (2.9) 

PF=PO -~[\Y;(1++;(2)-P.(t-~)] (2.13) 

The term Q”(t)/C represents the effect of the bubble on the reflected wave;, it involves the third 
derivative a”‘(t) and is fairly small in the long-wave approximation. Indeed, the components of Eq. (2.12) 
may be estimated in the same way as (2.2) 

(2.14) 

and the ratio between them is determined by a small parameter in the internal zone (around the 
boundary layer of the bubble), given the validity, as assumed, of the long-wave approximation and the 
smallness of the Mach number 

Noting that 

c, aa"+ 2aJ2, 3 
aa”+-a r2 E Q' 1 ar2 

a 2 a 2 

we can rewrite (2.12) as 

Q' 1 r2 _ p,(a) - kf 1 ---_a - 
a 2 P 

+ c Q”(t), per = PO - $ v; 

(2.15) 

(2.16) 

If one assumes, in accordance with (2.15), that the term Q”(t)/C is small, then the first equation of 
(2.16) can be simplified considerably 

Q ‘=a 3’ + P, (‘;- &f 

1 
(l+wE,)) 

Differentiating this equality with respect to time, we obtain a long-wave approximation at low Mach 
numbers for Q”(f)/C 

(2.17) 
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The components of the right-hand side of this equation may be estimated in the same way as (2.14) 
as of the first order of smallness compared with the principal terms of Eq. (2.12) 

[ 

mtj+c+ P,(a)--p,f a’ 
2 P 

]+$a(~;-Pef]_!p, 

and the implicit remainder term is of the second order of smallness compared with the principal terms 
of Eq. (2.12) 

SO(E,) = pa)2 

Ignoring quantities of order E,” compared with unity (the long-wave approximation and the low Mach 
number conditions assumed in the boundary layer around the bubble) and substituting formulae (2.17) 
into (2.12), we have 

(I-~)aa-+~(l-$)af2 ++$) PAa;-P,r +d[ Po(“;-Pcr] 

Thus the evolution of the bubble radius in a weakly compressible liquid (ap = Ap/p 4 1) due to radial 
displacements of the flask walls in the long-wave approximation (E, = a& Q 1) at low Mach numbers 
(& = a’/C - E, 4 1) is described by the following system of equations 

3 &+-& = 
2 

P,(a)-p,f +;$( P.(Yb-Pef ), 
P 

pef =p, -$-w; 

(2.18) 

PI?(t) = PO -~[~~(~+~)-I;(r-~)-~(r-~)] 

This system is closed, given the state equation for the gas in the bubble with surface tension pg = 
p,(a), initial data t = 0: a = ao, a’ = a; and the force acting on the flask walls, in particular, the pressure 
at the flask walls pR = p&). 

Finally, using the simplified expression (2.17) for Q” in the long-wave approximation at low Mach 
numbers, one can rewrite the system of equations (2.18) as a system of differential-difference equations 
with a recurrence reaction for p&t) 

3 
au”+-a 

2 
r2 = PA4pgPsf(l) +;a& P,wpoPef(r~) 

(2.19) 

The system of equations (2.19) was first proposed in [6] to describe the slow (low Mach number) 
stage of variation of the radius of a gas bubble in experiments on sololuminescence (oscillations of the 
bubble under the action of a powerful acoustic field, accompanied by luminescence of the gas). 

Experimental verification of the proposed model requires simultaneous measurement of both the 
gas bubble size dynamics and the pressure of the liquid at the flask walls. 

It should be noted that, generally speaking, the spherical symmetry of the problem is violated owing 
to buoyancy forces. Computations show, however, that the upward displacement of the bubble 
(buoyancy) is quite small compared with the size of the flask (it amounts to a few bubble radii). The 
problem of the stability of the bubble position at the flask centre was considered in [9]. 

3. THE AMPLITUDE-FREQUENCY RESPONSE CURVE 

To construct the amplitude-frequency response of the radial pulsations of the bubble one must 
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linearize system (2.1’9) and determine the amplitude of the perturbation of the bubble radius and the 
effective pressure as functions of the pressure at the flask walls and the frequency, for sinusoidal 
perturbations of frequency o. 

The linearization of the system of equations for the perturbations 

b=a-a0, 4Gf =&.f -?b &R=PR-PO 

has the form 

Aa” ; 5g+a2 Aa PO 4&f + Aa 4Gf -=c- - 
00 a, Oa, [ Pod PO a, PO 1 

~,f(t+RJC)=~~f(t--fC)+2R~;l(t)+ 

PO PO C PO 

+ 2poa,“oi Aa’(t - RI C) : 2a. AP&(t - R I C) 

POC a, C PO 

4 =-+3y+(3y-l)ol, a=“:?* o=2c 
Poao PO% 

Assuming sinusoidal perturbations 

@I&) - p e iw &.2f (t) 
R 

, _=p eiw, 
ef 

*=Qw 
PO PO a0 

one can reduce the linearized system (3.1) to the equations 

&_A l+iWao/C 

poai 0: + i&o - co2 p,f 

POa$d A + p - ef 
PO 

(3.1) 

(3.2) 

Introducing dimensionless variables 

PoC2 r=3y+(3y-l)o, E=- 
Par 

and substituting the tirst equation of (3.2) into the second, we obtain expressions for the amplitude 
ratios of the perturbations 

A 1 l+iEr -=-- 
P,f r l+kr-EE2x2 

P, f EE~x~ 1 
-1 - = x 

4 
sin x + exp(-ix) 

l+i&.r-E~~x~ 

A 
- = AR(x) = 
PR 

x(1 + ior) =- 
r 

[(l+i&x-E~~x~)sinx+E~~x~exp(-ix)]-’ 

Hence it follows that the absolute value of AR is 

(3.3) 

,A ,_ x(l+E2X2)x x 
R- r 
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X{[EE3X3 COSX +(l- E&*x*)sinx]* +(l -&*~*)*a*~* sin* x)-K (3.4) 

Clearly, as E -_) 0, when the effect of the bubble on the liquid dynamics disappears, the solution of 
problem (3.3) degenerates into a solution corresponding to a monochromatic standing spherical acoustic 
wave [7] 

P,, I PR = x /sin x 

The quantity Pti equals the amplitude of the pressure in the liquid at the centre of the flask. The 
frequencies ok = k&/R (xk = h) at which the liquid pressure amplitude at the centre tends to infinity 
correspond to the case of “flask” resonance. This means that the ratio of the propagation time of a 
wave from the flask wall to the centre and back (Z/C) to the oscillation period of the flask walls (2x/e@ 
is an integer k. 

Typical amplitude-frequency response curves 1Ak I (3.4) are shown in Fig. 1 for the case of a spherical 
flask of radius R = 5 cm filled with water (C = 1500 m/s, p. = lo5 Pa, p. = lo3 kg/m3, C = 0.073 N/m), 
with a gas bubble (y = 1.4) of radius a0 = 10,100,500 and 500 pm situated at the flask centre. The first 
“flask” resonance occurs at frequency 01 = 94.2 kHz. 

For fine bubbles, whose radius is very small compared with the flask radius (E Q l), resonance 
(maximum l& 1) occurs when sinx’ = 0, orx = xk = h. Thus, the bubble has practically no effect on 
the resonance frequency. It will influence the resonance frequency only when the oscillation frequency 
of the flask is comparable with the resonance frequency ces of the bubble (cf. the curves for a0 = 
100 pm). 

It is noteworthy that outside the bubble resonance zone, the smaller the bubble, the higher is the 
value of the response function I k& I (cf. the corresponding curves for as = 10 and 500 pm). 

For bubbles of sufficiently large radius, but still significantly smaller than the flask, the parameter E 
may considerably affect the shape of the response curve, both with respect to the value of the resonance 
frequencies (which may differ substantially from the flask resonance frequencies) and the value of the 
response function in the resonance domain (the case a0 = 5000 pm). 

Fig. 1. 
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4. NUMERICAL INVESTIGATION OF THE COMPLETE 
SYSTEM OF EQUATIONS 

We will now consider problem (1.4), (1.5) of the radial motion of a compressible liquid around a gas 
bubble at the centre of a flask, on the assumption that the pressure on the flask wall varies according 
to a given law. In Lagrange variables (rc, t), system (1.4) takes the following form 

PO- L 0 2 ar 2a 
P 

-=o, po$+ ; $=o, $=w, p=p(p) 
‘0 3% 0 0 (4.1) 

The boundary and initial data are 

r-I,=0 = ro, p&,0 = PO. PI,,0 = PO, Wl,=o = 0 
(4.2) 

where p. is the density of the liquid at pressurepo and r. the Lagrange coordinate of the liquid particles; 
the origin is taken at the centre of the bubble and the Lagrange coordinates coincide with the Euler 
coordinates at the starting time. The equation of state of the liquid (the last equation of (4.1)) will be 
the equation in the acoustic approximation 

(4.3) 

The equation of state of the gas is taken as 

(4.4) 

corresponding to adiabatic behaviour of the bubble. The pressure at the boundary R varies sinusoidally 

pR(t)=po(l-P,sinm) (4.5) 

For convenience in numerical integration, the problem was expressed in dimensionless form (at 
z = 0) 

“=ar’ aW F 

0 

2 ap ar 
-&$l x=- K air,’ z=iK 

P $ ( 1 7 = PR(T), ji(l,z)= F3Y(l,T) 

FIT,, = F,, ~I,=, = 1, i717.=c=0, VI,=,= 1 

where 
,,$L, p;, f$, Q=Z, R2, &(c:=f$ 

* 43 

are dimensionless variables. 
Figures 2 and 3 illustrate the result of computations carried out using a difference scheme [8] (the 

solid curves) and our system of finite-difference differential equations (2.19) (the dashed curves) for 
a0 = 10 pm, R = 5 cm, p. = 10’ Pa, p. = lo3 kg/m3, C = 15OOrn/s,ando=~=2rcx45kHz.The 
comparison was carried out for the time dependence of the bubble radius, with the Mach number 
monitored from the velocity of the bubble wall. It can be seen from the figures that at small amplitudes 
of the “flask” pressure (pR = 0.01, Fig. 3) the Mach numbers are very small (m < 0.001) and model 
(2.19) gives almost exact agreement with the solution of the complete system. If the amplitude of the 
external pressure is increased by a factor of six (pR = 0.006), the Mach numbers increase by a factor 
of 50 (m c 0.005) and the approximate solution deviates from the exact solution. 
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